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Independent Oscillator Model of a Heat Bath: 
Exact Diagonalization of the Hamiltonian 

G. W. Ford, 1 J. T. Lewis,  2 and R. F. O'Connel l  3 

Received May 11, 1988 

The problem of a quantum oscillator coupled to an independent-oscillator 
model of a heat bath is discussed. The transformation to normal coordinates is 
explicitly constructed using the method of Ullersma. With this transformation 
an alternative derivation of an exact formula for the oscillator free energy is 
constructed. The various contributions to the oscillator energy are calculated, 
with the aim of further understanding this formula. Finally, the limitations of 
linear coupling models, such as that used by Ullersma, are discussed in the form 
of some critical remarks. 
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dissipation. 

1. I N T R O D U C T I O N  

In recent publications we have shown that the quantum Langevin equation 
affords a powerful and physically appealing approach to the problem of an 
atom in a blackbody radiation field. (1'2) This problem goes back to van 
Kampen's thesis, (3) where a nonrelativistic atom interacting via dipole 
coupling with the electromagnetic field was first discussed with modern 
methods. There, too, he first pointed out that the problem of a har- 
monically bound electron (oscillator) is exactly soluble and provides an 
instructive model for real atoms. Some years later, in a classic series of four 
papers, (4) his student P. Ullersma discussed the general model of an 
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oscillator linearly coupled to a bath of independent oscillators. This linear 
coupling model has the defect that it is unphysical in the sense that for the 
free particle there is no lower bound on the energy of the system. ~2) 
Ullersma was well aware of this defect and handled it by placing a 
requirement [ref. 4, p. 33, Eq. (19)] that the oscillator force constant be 
sufficiently large that the system is physical. Unfortunately, later authors 
have not always been so careful and the result has been confusion and 
error in the subsequent literature. Indeed, Ullersma himself, in his 
application of his results to the oscillator coupled to the radiation field, 
obtained incorrect results. 

Our purpose here is to apply Ultersma's methods to the independent 
oscillator (IO) model of a heat bath. The point is that this model, in con- 
trast to the linear coupling model, has a lower bound on the energy and is 
therefore unique and physically correct. ~2) In Section 2 we describe this 
model, find the normal modes, and construct the explicit transformation to 
normal coordinates. Then, in Section 3 we form the operator Hamiltonian 
for the system and use the canonical transformation to normal coordinates 
to obtain a remarkable formula for the oscillator energy, a formula we 
have obtained earlier by other methods. ~1'5) In Section4 we use this 
same transformation to calculate the thermal expectation of various 
contributions to the Hamiltonian for the system, with the aim of 
understanding the remarkable formula. Finally, in Section 5 we make some 
concluding remarks. 

2. THE I0  M O D E L  

The IO model is a very simple model in which the quantum particle is 
surrounded by a large (eventually infinite) number of heat bath particles, 
each attached to it by a spring. The Lagrangian for an oscillator coupled to 
an IO heat bath with N bath oscillators is therefore 

N 

L=�89189 ~, [�89189 2] (2.1) 
j - - I  

This is the Lagrangian for a set of coupled oscillators. According to a 
well-known theorem of mechanics, (6,7) the potential and kinetic energies for 
such a system can be simultaneously brought to diagonal form by an 
orthogonal coordinate transformation. In the remainder of this section we 
do this explicitly by first finding the normal modes of the system and then 
constructing the transformation. 
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2.1. Normal  Modes 

The equations of motion according to the Lagrangian (2.1) take the 
form 

N 

m2 + Kx = ~ mje)2(qj-- x) 
j = l  

glj + e)Yqs: e)2x 

We seek normal mode solutions of the form 

x(t) = Xo(e) ) e - '~;  qj(t) = Xi(e) ) e io,, 

The equations of motion then become 

N 

( -me)Z + X) Xo = 2 mJe)~(Xj- Xo) 
j=l  

(-e)2 + ~o~) xj= e)~x0, 

It follows from (2.6) that 

(2.2) 

(2.3) 

j = 1 , 2  .... 

e)? 
x ,  ie)) = _ j +  e); Xoie)) 

j = 1, 2 .... (2.4) 

(2.5) 

(2.6) 

(2.7) 

Putting this in (2.5), that equation becomes 

i 
N e)= 

- m e ) 2 + K +  ~ mje)~e)~---e) Xo(e))=0 (2.8) 
/ = 1  

There will therefore be a nontrivial normal mode solution if and only if the 
quantity in square brackets vanishes for some frequency e). That is, if and 
only if 

N (2)2 

me): - K= J=E1 mje)~ e ) 2  _ e)~ (2.9) 

The solution of this equation is illustrated in Fig. 1, where the two sides are 
plotted as functions of co 2. The abcissae of the points of intersection of the 
two graphs give the squares of the normal mode frequencies. The following 
points are worthy of particular attention. 

1. The normal mode frequencies are all real, even for a free particle 
( K =  0). 



442 Ford etal .  

2. The number of distinct normal mode frequencies is one more than 
the number of distinct bath frequencies. We denote the normal 
mode frequencies by (5 r, r = 0, 1 ..... N. 

3. The normal mode frequencies eSr interleave the bath frequencies 
coj. 

Figure 1 should be contrasted with the corresponding figure in 
Ullersma's first paper [see Fig. 1 and also Eq. (17) of ref. 4].  The essential 
difference is that for the linear coupling model there will be an unstable 
normal mode frequency for a free particle (in Ullersma's notation m = 1 
and K =  g2o2). We repeat that Ullersma was aware of this and imposed a 
requirement [-Eq. (19) of ref. 4] on K such that there be no such unstable 
modes. However, in the subsequent literature this has led to much 
confusion. 

Before we proceed, it will be useful to introduce some further notation. 
The (generalized) susceptibility is 

c~(o9)  = - m ~ o  2 + K +  mjco~  c~ 2 ( 2 . 1 0 )  
/ =  1 - -  ' 

This is the Fourier transform of the (retarded) Green function for the 
oscillator. More precisely, if a term xf(t) is added to the Lagrangian (2.1), 
then an added term f(t) will appear on the right-hand side of the oscillator 
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Fig. 1. Plot  of the functions too92- K and ~N_lmjO)2[Oj2/(~92--692)] as functions of ~o 2. The 
- 2  abscissae of the points of intersection of the two graphs give the eigenvalues o9 r 

(r = 0, 1, 2,..., N) cor responding  to the solutions of ct- 1(~) = 0. 
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equation of motion (2.2). The solution of the resulting equations of motion 
can be written 

where, for Im((D) > 0, 

We also write 

where 

x(t) = f '  ~ dr' G(t - t') f ( t ' )  (2.11) 

(,00 

~((D) = Jo dt ei~ (2.12) 

0:(09) = [ - - m ( D  2 + K -  ie)fi((D)] - 1  (2.13) 

fi((D) = E m, (D2 _(Dff j = l  ( '02 (2.14) 

is the Fourier transform of the memory function occurring in the Langevin 
equation for the 10 model. (2) It is clear from (2.10) that the bath 
frequencies ((Dj, j = 1, 2,..., N) are zeros of e((D) and that the normal mode 
frequencies (OSr, r = 0, 1,. ,  N) are poles of c~((D). That is, we can write 

/00 ~ ( ( D ) = _ _ I  ((D2 (D2) ((D2 (5~) (2.15) 
/~"/j = 1 r 

It is perhaps worth stressing that the zeros and poles of e((D) are all simple; 
if more than one bath oscillator has the same frequency, this is reflected in 
an increased strength of the contribution of that frequency to, say, )((D), 
not in a multiplicity of the corresponding zero of the susceptibility. 

We now construct the matrix of transformation to normal coordinates, 
introducing 

and, using (2.7), 

)(Or =-- Xo(Chr) (2.16) 

2 

xjr --- x j ( ~ , ) -  % x0 .  - 2  - - ( D  r --}- (.02 

We require the normalization condition 

N 
mX2, "+ E mJ X 2 = l ,  

j = l  

j =  1, 2 ..... N (2.17) 

r = 0 ,  1 ..... N (2.18) 
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It follows that 

I N 1- -1  X2r = m + ~  4 -2  m j ( d ) j / ( ( . O  r - -  0)2) 2 
j = l  

= --{ [-d~ l((D)/d(D2]o~=car}-' (2.19) 

Here the second form tells us that -X2r  is the residue of the pole of ~(z ~/2) 
at z = ch~; we shall find this a useful result. In the sequel it will be con- 
venient to put m o = m and to extend the values of the index j to include 
zero. We can then write the orthogonality relation for the transformation 
matrix Xjr in the form 

N 
mjXj, Xjs = 6rs, r, s = 0, 1,..., N (2.20) 

j - 0  

The completeness relation takes the form 

N 
Z XyrX1,r=lc~iJ, j,k=O, 1,...,U (2.21) 

r=o mj 
The orthogonality and completeness relations follow from the general 

theory, (6'7) but it is straightforward to derive them from the relations we 
have given. Thus, for r=s the orthogonality relation (2.20) is just the 
normalization condition (2.18), while for r ~ s  we can use (2.17) to write 

I+ 2 myXjrXj,= m E my 
j = O  " = I  ( - -  (Dr- 2 "~- (DJ'2)( - -  0)2 "~- ('L)j 2)  

- - - 2  - 2  mcS~- mj(D 2 (Dr -2  2 
(Dr - -  ('/)s j = 1 (Dr - -  (J)j 

N 7 
--m(o~ "~ S /'flJ (D2 -2 2/XorXos 

j =  1 (Ds - -  (Dj_J 

= 0, r :~ s (2.22) 

Here the second step is a simple identity, while the final step follows from 
(2.9). The proof of the completeness relation (2.21) is equally 
straightforward, but we omit it here. 

2.2. T r a n s f o r m a t i o n  to  N o r m a l  M o d e  C o o r d i n a t e s  

We introduce normal mode coordinates through the relation 
N 

Qr = mXo~x + ~ mjXjrqj 
j = l  

(2.23) 
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The inverse of this transformation is 

N N 
X= E XorQr, qJ= E XjrQr ( 2 . 2 4 )  

r=O r = O  

Putting this in the Lagrangian (2.1), we get 

L =1 ~ ~ {XorXos(mOrOs-KQrQs) 
r = O  s=O 

+ ~ [mjXjr.J(jsOrOs-mj(.o2(Xjr-XOr)(Xjs-Xos)QrQs']} (2.25) 
]=1  

Now we first use (2.17) in the one factor (Xjr--Xor) in the last term, but 
not in the other factor ( X j , -  Xo, ), to write 

- 2  
(Xjr -- XOr) = 09"f-r J~jr ( 2 . 2 6 )  

With a little rearrangement of the terms, the Lagrangian can then be 
written in the form (note that the sums over j now extend over j = 0): 

L mjXj~Xj~ (�89 -2 = 7OOrQrQs) 
r = O s = 0  j 

j = O  

In the second line, we can again use (2.17) to write 

(2.27) 

_ K X o r + _ 2 N  ( N (7_)2 c% E miX, r= -K+mdo 2 -  • m~ ~ 2 -2 Xor (2.28) 
j = 0  j = l  (.Oj - - ( D r /  

which vanishes on account of (2.9). We can therefore drop the second line 
in (2.27). In the first line we use the orthogonality relation (2.20) to get the 
final result: 

N 
L ~ 1 " 2 1 ~ 2 ~ 2 ~  = ( ~ Q r  - -  ( 2 . 2 9 )  

r=O 

This is the Lagrangian for a set of N + 1 independent oscillators. 

822/53/'i -2-29 
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3. T H E  M E A N  E N E R G Y  

The Hamiltonian operator for the oscillator coupled to an IO heat 
bath is obtained from the Lagrangian (2.1) by standard methods. The 
result is 

p2 1 [ 1 l mjco~(qj_x)21 (3.1) S = ~m {- ~ Kx2 ~- ~ ~m j P ~ ~ -2 
j = l  

brought to diagonal form by the canonical transformation This is 
corresponding to (2.23). That is, one puts 

N N 

Qr=mXor x +  2 mjXjrqj' Pr=Xo,-p-] - ~ Xjrpj ( 3 . 2 )  

j = l  j = l  

whose inverse is 
N N 

x= Z XorOr, qJ= 2 XjrOr 
r = 0  r = 0  

N N (3.3) 
p = m Z XorPr, pj= mi 2 XjrPr 

r = 0  r = 0  

By an argument identical to that used to obtain the form (2.28) for the 
Lagrangian, this transformation brings the Hamiltonian (3.1) to the 
diagonal form 

N 
H =  ~ 1 2 1 z~2(~2~ (TPr + (3.4) 

r = 0  

This is the Hamiltonian for a set of N +  1 independent oscillators. It 
follows that, if we define the thermal expectation of an operator C by 

((9) = Tr[(9 exp( -H/kT)]/Tr[exp( -H/kT)]  (3.5) 

(here T is the temperature and k is Boltzmann's constant), then 

( Or Os) = (h/2eSr) coth(h~Sj2kT) 6rs 
(3.6) 

( e r e  s ) = (he3j2) coth( hch j2k T) (~ rs 

These are the chief results that will be used in the rest of this paper. 
We now turn to the calculation of the oscillator energy at temperature 

T. First we form U(T), the energy of the system of oscillator coupled to the 
heat bath. This is just the thermal average of the Hamiltonian (3.1) itself. 
Using the above results, we see that 

N 

U(T) =- ( H ) =  ~ u((5r, T) (3.7) 
r = 0  
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where u(co, T) is the energy, including rest energy, of a single oscillator of 
frequency co at temperature T, 

u( co, T) = ( hoJ/2 ) coth( ho)/2k T) (3.8) 

We must compare this with Ue(T), the energy of the heat bath in the 
absence of the oscillator. The Hamiltonian for this system of bath alone is 

j = l  

Therefore, repeating the argument for this system, we have 

U~(T) - Tr [ H  e exp( - i~/e/kT) ] /Tr  [exp( - ge / k r )  ] 
N 

= 2 u(coj, T) (3.10) 
j - - 1  

Now for N large, to leading order, U(T) and Ue(T) are the same. The 
point is that the frequencies co s and the frequencies c5 r interleave and 
therefore for large N and when they are densely distributed, they have the 
same distribution. However, if we form the difference 

Wo(T) = U(T) - We(T) (3.11 ) 

the leading order cancels and we obtain a finite result. This is the energy we 
ascribe to the oscillator. It is the energy one would obtain, say, in a 
gedanken experiment in which one measured the difference in weights of the 
coupled system and the system of bath alone. 

For this oscillator energy we have a remarkable formula, which we 
obtain by the following argument. Using the two expressions (2.19) for 
)(Or, (2) we can write the expression (3.7) for U(T) in the form 

U(T) = - ~ u(d9,., T) m + ~ c~----~? 2 ~ (3.12) 
r=o . j = l (  r -  j ) / t L  ao = r 

As we have noted, this last factor is the residue of the pole of c~(z ~/2) at 
z = Chr 2. We therefore can use the residue theorem to write 

E 1 U(T)=~/. ,,dzu(z 1/2, T) m+ ~ mjo)4/(z-co~) 2 a(z '/2) (3.13) 
j = l  

Here the contour C" encloses all the poles of a(z 1/2) but excludes all other 
poles of the integrand, as shown in Fig. 2. We now deform the contodr into 
the contour C enclosing all the poles of the integrand on the positive real 
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Fig.  2. I l l u s t r a t i o n  o f  t he  c o n t o u r s  o f  i n t e g r a t i o n .  

axis. In the process we pick up the residues of the integrand at the poles 
z--  (7)2j, j__'__ 1, 2 ..... N. Using the expression (2.10) for ~(~o), we see that the 
residue of the integrand at z = co~ is just - u(~os, T). Therefore, we can write 

U(T) = (1~2hi) I_ dz u(z m, T) m + ~ mj~o4/(z - (n~) 2 ct(z '/2) 
j = l  

N 
+ Z u(coj, T) (3.14) 

j = l  

Next we use once again the identity of the two expressions (2.19) to write 

[ m +  ~ msoo4/(z--cn~)2]~(z'/2)- d~ 1(zl /2) ,1/2 , 
j=1 dz cq z ) 

dln[c~(zm) ] 
- d z  (3.15) 
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Using this in the integrand of (3.14) and recognizing the sum as UB(T), we 
see that the oscillator energy (3.11) can be written 

1 fc dln[~(zl/2)] (3.16) U~ T) = ~i~i dz u(z 1/2, T) dz 

The contour C can now be deformed slightly into a contour completely 
enclosing the real axis in the z plane. Since there is no singularity of the 
integrand at z = 0, there is no change in the above expression. We now 
make the change of variable z = co 2. The contour enclosing the real axis in 
the z plane becomes a contour just above the real axis in the co plane. We 
therefore can write 

1 f~ dln[c~(c~ + i0+)] (3.17) Uo(:r) = ~n/ d~o u(co, ~r) dco 
oO 

This formula can be simplified somewhat if we note that u(co, T) is an odd 
function of co, while cr + i0 +) satisfies the reality condition 

:~(-- co + i0 + ) = c~(co + i0 + )* (3.18) 

Therefore, we may write 

1 ( ~  dco u(co, T ) Im  d ln[~(co + i0"  )] Uo( T) 
n Jo dco 

(3.19) 

This is the remarkable formula for the oscillator energy. 
The reason we say this formula is remarkable is that it expresses the 

oscillator energy, including the energy of interaction with the heat bath, in 
terms of the oscillator susceptibility alone. Moreover, it stands outside the 
usual formulas and prescriptions of stochastic processes, which in general 
are limited to expressions for expectations of functions of the system 
variables (in our example the oscillator coordinate x) alone. This formula 
says something about the heat bath. It is an essentially quantum 
mechanical formula. In the classical limit (h -*0 )  the single-oscillator 
energy u(co, T)--* kT, and, since the phase of the polarizability e(co + i0 + ) 
goes through n as ~o goes from + oo to - o% we see that Uo(T ) -~ kT. This 
is just the classical equipartition energy for an oscillator and should be 
obvious from the beginning, since there is one additional oscillator in the 
coupled system. 

For  completeness we give the formula for the oscillator free energy. 
This is defined to be 
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Fo( T) = F( T) - G(T) 

= - k T l n { t r [ e x p ( - H / k T ) ]  } 

+ k T  In { tr [exp( - H~/kT) ] } 

N N 

= y, f(a3 r, T ) -  ~. f(a~j, T) (3.20) 
r = O  j = l  

where f(~o, T) is the free energy of a single oscillator, including zero-point 
energy, 

tic), T) = k T ln[2 sinh ( hco /2k T) ] (3.21) 

The oscillator free energy has the physical interpretation of the work done 
when at constant temperature the oscillator is coupled to the heat bath. 
The formula for this free energy, obtained in exactly the same way as that 
for the energy is 

Fo(T)= -nl fo ~ doof(~, T) Im d ln[a(c~ + i0 + ) ] d ~  (3.22) 

Of course, the two formulas are related by the thermodynamic identity 

U= F -  TQF/QT (3.23) 

Perhaps, before closing this section, we should remark that a simple, direct 
proof of this formula for the free energy, based on the form (2.15) for the 
susceptibility, is given in ref. 1. 

4. CONTRIBUTIONS TO THE MEAN ENERGY 

Here we evaluate the various contributions to the energy, with the aim 
of elucidating the remarkable formula (3.19). The Hamiltonian (3.1) can be 
written 

H = H o + HB + HINT q- R (4.1) 

Here H o is the Hamiltonian for the free oscillator, H B is the bath 
Hamiltonian (3.9), HIN T is the interaction energy in the linear coupling 
model used by Ullersma, and R is the remainder (sometimes termed the 
self-interaction energy), 

2 1 2 1 p2  . 1 K x  = "~ m ~  + K x  2 Ho 

N 

HINT = -- • mj~o2qjx (4.2) 
j - - 1  

~ 1  2 2  R = -~ m/o)x  
j = l  
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The thermal expectation of each of these quantities can be formed using the 
same method as used in Section 3 to derive the formula for the oscillator 
energy. 

As an illustration, consider the thermal average of the square of the 
oscillator displacement, 

N 

<x 2) = ~ (h/2Cor) coth(hff)r/2kT) Xgr 
r = O  

= (1/2~zi) Ic dz (h/2z 1/2) coth(hzl/2/2kT) 7(z v2) (4.3) 

Here, the first line is obtained using (3.3) and (3.6), while the second line 
follows from (2.19) and the interpretation of -Xo2r as the residue of ct(z ~/2) 

_ -2 In this integral the contour C is that shown in Fig. 2a. at its pole at z -  cot. 
Again, we must deform this contour slightly into a contour completely 
enclosing the real axis in the z plane. This time there is a contribution, 
since the integrand has a pole at the origin. On the contour enclosing the 
real axis we can make the substitution z = co2 to get 

( x 2 ) = ( h/2rci ) f c' de) coth ( hco/2k T) ~( co ) + k T~( O ) (4.4) 

Here the added term is the contribution of the pole in the integrand of (4.3) 
at the origin in the z plane, and the contour C' in the co plane is that shown 
in Fig. 2b. We now displace this contour down onto the real axis. In doing 
this, we use the identity 

coth[h(co + i0 + )/2kT] = P coth(hco/2kT) - i(27zkT/h) 6(co) (4.5) 

where P denotes principal value. The contribution of the 6-function exactly 
cancels the added term in (4.4) and we obtain the result 

f 
o o  

( x  2 ) = (h/2rci)P de) coth(hco/2kT) ~(09) (4.6) 
- - 0 3  

where the principal value prescription is only at the origin. As a final step 
we use the fact that P coth(hco/2kT) is an odd function of co, together with 
the reality condition e( - co  + i0 + ) = c~(co + i0 + )*, to write 

( x  2) = (h/n) dco coth(hco/kT) Im [~(co + i0 + )] (4.7) 

Here we have dropped the principal value prescription, since 
Im[~(co + i0+)-1, being an odd function of co, vanishes at co--0. 
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Consider now the thermal expectation of the free-oscillator 
Hamiltonian. Using the methods illustrated above, we find 

;o o ( N o )  = (h/rc) dco coth(hco/2kT) �89 2 + K) Im[~(co + i0 +)] (4.8) 

One might be tempted to identify this expectation with the oscillatory 
energy, but this would not be correct. We have seen that the oscillator 
energy Uo(T) given by (3.19) has the physical interpretation of the 
difference in energy of the system of oscillator coupled to the bath and that 
of the bath alone. There is no such simple interpretation for ( H o ) .  It is 
instructive to form the difference U o - ( H o ) .  Using (3.19), (4.8), and the 
expression (2.13) for ~(co), we find 

U o - ( H o ) = ~ - f z  ~ do~coth 2 ~  Re co2~(co) (4.9) 

We see here that except for the case where the spectrum of the bath 
oscillators is such that /~(co) is a constant, independent of co, the expec- 
tation of the free-oscillator Hamiltonian will differ from the oscillator 
energy. This is just the case of Ohmic friction, where/~(co) = if, the friction 
constant. 

Next consider the thermal expectation of the remainder term R in 
(4.1). From the expression (2.14) for/~(co) we see that [-recall 1/(x + iO + ) = 
P ( 1 / x ) -  irc6(x) ] 

N 

Re[ /~(co+i0+)]=  rt ~ mjco2[cS(co-coj)+6(co+coj)] (4.10) 
2j=1 

With this we see that we can write 

( R ) =  1 I o  dcoRe[~(co+iO+)](x 2) (4.11) 

Since on general grounds we know that Re[f i (co+i0+)]  must be 
positive, (2) we see that this quantity can never be zero. It is never correct to 
neglect it, as is frequently clone in discussions based on linear coupling 
models. Indeed, in the case of Ohmic friction the integral is linearly 
divergent. 

The expectations of the remaining terms in (4.1) can be obtained by 
the same methods. With a little rearrangement the results can be expressed 
in terms of the expections we have already obtained. One finds 

( H B )  = Un + Uo - 3 ( H o )  + 2 K ( x  2) + ( R )  
(4.12) 

( H I N T )  = 2(  Ho ) - 2 K ( x  2) - 2 ( R )  
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Note that the expectation of the remainder term, neglected in linear 
coupling theories, is present in each of these expressions. As we have 
remarked above, this term is divergent for the case of Ohmic friction, as 
well as for most physically meaningful cases. When, however, these results 
are combined to form U - ( H ) ,  this term cancels and we once again 
obtain 

U = - ( H ) = ( H o ) + ( H B ) + ( H I N T ) + ( R ) = U ~ + U o  (4.13) 

as in (3.11). We should emphasize that all four contributions play a role in 
this check. It would be an error to identify Uo and (Ho),  except in the 
case of Ohmic friction. It would be an error to identify Ue and ( H B )  in 
any case. Finally, it would be an error to neglect R, since its contribution 
must delicately cancel among those of the last three terms in (4.1). 

5. C O N C L U S I O N  

We have used Ullersma's method to explicitly diagonalize the 
Hamiltonian for the IO model. With this we could give an alternate 
derivation of the formulas for the oscillator energy and free energy we had 
previously obtained with other methods. As we have earlier remarked, (2) 
any linear passive heat bath is equivalent to an IO model, so this is a 
general result. 

With this explicit diagonalization we were able to evaluate the various 
contributions to the oscillator energy and thus to elucidate the various con- 
tributions. In particular, we were critical of the linear coupling model used 
by Ullersma and, indeed, by a number of earlier authors. (8-1~) The basic 
difficulty with the linear coupling model is that there is no lower bound on 
the energy. This is a grave defect, since the bath is not passive, meaning 
that there is no thermal equilibrium state and the second law of ther- 
modynamics is violated. (2~ Ullersma was aware of this and attempted to 
correct the defect with a constraint on the oscillator force constant, but 
there remains some awkwardness and confusion, as is illustrated in the 
contrast between our Fig. 1 and the corresponding figure in Ullersma's 
paper. Another illustration is found in Eq. (17) of ref. 4, which in our 
notation would read 

~ ( ~ ) =  [_mco2 + K _  io)~tLc(co)] 1 (5.1) 

where, in place of (2.14), 

/ cc(CO) = myco  ico  
j = l  

(5.2) 
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As in (4.10), from this we see that 

N 7~ 
Re[fiLc(co + i0 + )3 = ~ ~ msco)E6(co  - coj) + 6(co + cos) - 26(0))3 (5.3) 

j = l  

This is obviously not a positive distribution, as is the corresponding quan- 
tity (4.10) for the IO model. But we know on the basis of fundamental 
principles that ReE/~(e) + i0 +)]  must be a positive distribution. (2) 

This serious defect of the linear coupling models must somehow be 
repaired. One at times sees this repair effected by a "force constant renor- 
malization," 

N 
K--* K +  Z r% c~ (5.4) 

j =  1 

This has the effect of replacing the linear coupling model with an IO 
model, i.e., of replacing the susceptibility (5.3) with the IO susceptibility 
(2.13). However, this repair is not unique; one can add terms to the linear 
coupling Hamiltonian so as to get a n y  IO model. Surely it is better to start 
with a physically sensible and unique IO model which has no need of 
repair. 

Finally, we would like to end with some remarks about van Kampen's 
original problem of the oscillator coupled to the blackbody radiation field, 
which acts as a heat bath. Here the confusion in the literature has come to 
the point that it is necessary to point out that the "coupling constant 
renormalization" discussed above is not the mass renormalization of quan- 
tum electrodynamics. We hope that the present paper will help clarify the 
situation. In any event, in our opinion, van Kampen's original formulation 
of the problem is still basic to any proper discussion. 
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